Scale-by-scale budget and similarity laws for shear turbulence

Author:

CASCIOLA C. M.,GUALTIERI P.,BENZI R.,PIVA R.

Abstract

Turbulent shear flows, such as those occurring in the wall region of turbulent boundary layers, show a substantial increase of intermittency in comparison with isotropic conditions. This suggests a close link between anisotropy and intermittency. However, a rigorous statistical description of anisotropic flows is, in most cases, hampered by the inhomogeneity of the field. This difficulty is absent for homogeneous shear flow. For this flow the scale-by-scale budget is discussed here by using the appropriate form of the Kámán–Howarth equation, to determine the range of scales where the shear is dominant. The resulting generalization of the four-fifths law is then used to extend to shear-dominated flows the Kolmogorov–Oboukhov theory of intermittency. The procedure leads naturally to the formulation of generalized structure functions, and the description of intermittency thus obtained reduces to the K62 theory for vanishing shear. The intermittency corrections to the scaling exponents are related to the moments of the coarse-grained energy dissipation field. Numerical experiments give indications that the dissipation field is statistically unaffected by the shear, supporting the conjecture that the intermittency corrections are universal. This observation together with the present reformulation of the theory gives a reason for the increased intermittency observed in the classical longitudinal velocity increments.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3