Viscous effects on fully coupled resonant-triad interactions: an analytical approach

Author:

Wu Xuesong

Abstract

This paper is concerned with viscous effects on the development of a fully coupled resonant triad consisting of Rayleigh waves. Complementary to the numerical study of Lee (1995), we attack this problem analytically. The fully coupled amplitude equations are derived with all the kernels involved being expressed in closed forms. The amplitude equations are then solved numerically. It is found that viscosity reduces the growth of the disturbance in the parametric-resonance stage and delays the final occurrence of the finite-time singularity. But viscosity does not appear to be able to eliminate the singularity. While the analysis is performed for the temporally evolving instability waves, we demonstrate its broad application by showing that it can be slightly modified to obtain the amplitude equations for the spatially growing Rayleigh waves, and the equations which describe the development of the resonant-triad of Tollmien–Schlichting waves in the fully interactive stage.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference26 articles.

1. Wundrow, D. W. , Hultgren, L. S. & Goldstein, M. E. 1994 Interaction of oblique stability waves with a nonlinear planar wave.J. Fluid Mech. 262, 343.

2. Goldstein, M. E. & Leib, S. J. 1988 Nonlinear roll—up of externally excited free shear layers.J. Fluid Mech. 191, 481.

3. Saric, W. S. & Thomas, A. S. W. 1984 Experiments on subharmonic route to turbulence in boundary layers. In Turbulence and Chaotic Phenomena in Fluids ,North—Holland.

4. Craik, A. D. D. 1985 Wave Interactions and Fluid Flows . Cambridge University Press.

5. Khokhlov, A. P. 1993 The theory of resonance interaction of Tollmien-Schlichting waves.Prikl. Mekh. Tekh. Fiz 4, 65.

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3