On the instability of vortex–wave interaction states

Author:

Deguchi Kengo,Hall Philip

Abstract

In recent years it has been established that vortex–wave interaction theory forms an asymptotic framework to describe high Reynolds number coherent structures in shear flows. Comparisons between the asymptotic approach and finite Reynolds number computations of equilibrium states from the full Navier–Stokes equations have suggested that the asymptotic approach is extremely accurate even at quite low Reynolds numbers. However, unlike the situation with an approach based on solving the full Navier–Stokes equations numerically, the vortex–wave interaction approach has not yet been developed to study the instability of the structures it describes. In this work, a comprehensive study of the different instabilities of vortex–wave interaction states is given and it is shown that there are three different time scales on which instabilities can develop. The most dangerous type is a rapidly growing Rayleigh instability of the streak part of the flow. The least dangerous type is a slow mode operating on the diffusion time scale of the roll–streak part of the flow. The third mode of instability, which we will refer to as the edge mode of instability, occurs on a time scale midway between those of the other two modes. The existence of the latter mode explains why some exact coherent structures can act as edge states between the laminar and turbulent attractors. These stability results are compared to results from Navier–Stokes calculations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3