Granular flow: physical experiments and their implications for microstructural theories

Author:

Drake Thomas G.

Abstract

Positions, velocities and rotations of individual particles obtained from high-speed motion pictures of essentially two-dimensional flows of plastic spheres in an inclined glass-walled chute were used to test critical assumptions of microstructural theories for the flow of granular materials. The measurements provide a well-defined set of observations for refining and validating computer simulations of granular flows, and point out some important limitations of physical experiments. Two nearly steady, uniform, collisional flows of 6-mm-diameter plastic spheres over a fixed bed of similar spheres inclined at 42.75° were analysed in detail. Particle fluxes were about 2230 particles s−1 and 1280 particles s−1. The nominal depth in both flows was about 18 particle diameters. Profiles of mean downstream velocity and mean rotations, translational temperature and rotational temperature, and bulk density in the flows show slip at the bed of 17 and 26% of the mean flow velocity for the high- and low-flux flows, respectively; mean rotation rates $\overline{\omega}_x$ and $\overline{\omega}_y$ less than 9% of $\overline{\omega}_z$ ($\hat{e}_x$ parallel to the bed, $\hat{e}_x$ normal to the sidewall); translational temperature nearly independent of distance from the bed; rotational temperature decreasing with distance from the bed; and density decreasing almost linearly with distance from the bed. The continuum hypothesis (i.e. small gradients in mean-flow properties) is satisfied throughout the flow except near the fixed bed, where large gradients in the mean rotation $\overline{\omega}_z$ and downstream velocity occur over a few particle diameters. The distributions of velocities and rotations are approximately Maxwellian, except near the fixed bed. Testing microstructural theories with physical experiments is severely hampered by limitations on material properties of particles, flow lengthscale and the spatial and temporal resolution of observations. Only a small volume of the parameter space for collision-dominated flows can reasonably be explored by physical experiment. Extraneous forces due to air drag, sidewall friction and electrical effects are not included in theories but must be addressed in physical experiments. Properly designed experiments are the essential link between computer simulations and theory, because they focus attention on particular features critical to testing the simulations, which in turn provide detailed particle-scale information needed to test theories.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3