Weakly nonlinear stability of viscous flow past a flexible surface

Author:

SHANKAR V.,KUMARAN V.

Abstract

The weakly nonlinear stability of viscous fluid flow past a flexible surface is analysed in the limit of zero Reynolds number. The system consists of a Couette flow of a Newtonian fluid past a viscoelastic medium of non-dimensional thickness H (the ratio of wall thickness to the fluid thickness), and viscosity ratio μr (ratio of the viscosities of wall and fluid media). The wall medium is bounded by the fluid at one surface and two different types of boundary conditions are considered at the other surface of the wall medium – for ‘grafted’ gels zero displacement conditions are applied while for ‘adsorbed’ gels the displacement normal to the surface is zero but the surface is permitted to move in the lateral direction. The linear stability analysis reveals that for grafted gels the most unstable modes have α ∼ O(1), while for adsorbed gels the most unstable modes have α → 0, where α is the wavenumber of the perturbations. The results from the weakly nonlinear analysis indicate that the nature of the bifurcation at the linear instability is qualitatively very different for grafted and absorbed gels. The bifurcation is always subcritical for the case of flow past grafted gels. It is found, however, that relatively weak but finite-amplitude disturbances do not significantly reduce the critical velocity required to destabilize the flow from the critical velocity predicted by the linear stability theory. For the case of adsorbed gels, it is found that a supercritical equilibrium state could exist in the limit of small wavenumber for a wide range of parameters μr and H, while the bifurcation becomes subcritical at larger values of the wavenumber and there is a transition from supercritical to subcritical bifurcation as the wavenumber is increased.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3