Consistent formulations for stability of fluid flow through deformable channels and tubes

Author:

Patne Ramkarn,Giribabu D.,Shankar V.ORCID

Abstract

In the formulation of stability of fluid flow through channels and tubes with deformable walls, while the fluid is naturally treated in an Eulerian framework, the solid can be treated either in a Lagrangian or Eulerian framework. A consistent formulation, then, should yield results that are independent of the chosen framework. Previous studies have demonstrated this consistency for the stability of plane Couette flow past a deformable solid layer modelled as a neo-Hookean solid, in the creeping-flow limit. However, a similar exercise carried out in the creeping-flow limit for the stability of pressure-driven flow in a neo-Hookean tube shows that while the flow is stable in the Lagrangian formulation, it is unstable in the existing Eulerian formulation. The present work resolves this discrepancy by presenting consistent Lagrangian and Eulerian frameworks for performing stability analyses in flow through deformable tubes and channels. The resolution is achieved by making important modifications to the Lagrangian formulation to make it fundamentally consistent, as well as by proposing a proper formulation for the neo-Hookean constitutive relation in the Eulerian framework. In the neo-Hookean model, the Cauchy stress tensor in the solid is proportional to the Finger tensor. We demonstrate that the neo-Hookean constitutive model within the Eulerian formulation used in the previous studies is a special case of the Mooney–Rivlin solid, with the Cauchy stress tensor being proportional to the inverse of the Finger tensor unlike in a true neo-Hookean solid. Remarkably, for plane Couette flow subjected to two-dimensional perturbations, there is perfect agreement between the results obtained using earlier Eulerian and Lagrangian formulations despite the crucial difference in the constitutive relation owing to the rather simple kinematics of the base state. However, the consequences are drastic for pressure-driven flow in a tube even for axisymmetric disturbances. We propose a consistent neo-Hookean constitutive relation in the Eulerian framework, which yields results that are in perfect agreement with the results from the Lagrangian formulation for both plane Couette and tube flows at arbitrary Reynolds number. The present study thus provides an unambiguous formulation for carrying out stability analyses in flow through deformable channels and tubes. We further show that unlike plane Couette flow and Hagen–Poiseuille flow in rigid-walled conduits where there is a remarkable similarity in the linear stability characteristics between these two flows, the stability behaviour for these two flows is very different when the walls are deformable. The instability of plane Couette flow past a deformable wall is very robust and is not sensitive to the constitutive nature of the solid, but the stability of pressure-driven flow in a deformable tube is rather sensitive to the constitutive nature of the deformable solid, especially at low Reynolds number.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3