Particle-driven gravity currents down planar slopes

Author:

BONNECAZE ROGER T.,LISTER JOHN R.

Abstract

Particle-driven gravity currents, as exemplified by either turbidity currents in the ocean or ignimbrite flows in the atmosphere, are buoyancy-driven flows due to a suspension of dense particles in an ambient fluid. We present a theoretical study on the dynamics of and deposition from a turbulent current flowing down a uniform planar slope from a constant-flux point source of particle-laden fluid. The flow is modelled using the shallow-water equations, including the effects of bottom friction and entrainment of ambient fluid, coupled to an equation for the transport and settling of the particles. Two flow regimes are identified. Near the source and for mild slopes, the flow is dominated by a balance between buoyancy and bottom friction. Further downstream and for steeper slopes, entrainment also affects the behaviour of the current. Similarity solutions are also developed for the simple cases of homogeneous gravity currents with no settling of particles in the friction-dominated and entrainment-dominated regimes. Estimates of the width and length of the deposit from a monodisperse particle-driven gravity current with settling are derived from scaling analysis for each regime, and the contours of the depositional patterns are determined from numerical solution of the governing equations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3