Slumping regime in lock-release turbidity currents

Author:

Gadal CyrilORCID,Mercier M.J.ORCID,Rastello M.ORCID,Lacaze L.ORCID

Abstract

Most gravitational currents occur on sloping topographies, often in the presence of particles that can settle during the current propagation. Yet an exhaustive exploration of associated parameters in experimental studies is still lacking. Here, we present an extensive experimental investigation of the slumping regime of turbidity (particle-laden) currents in two lock-release (dam-break) systems with inclined bottoms. We identify three regimes controlled by the ratio between settling and current inertia. (i) For negligible settling, the turbidity current morphodynamics corresponds to that of saline homogeneous gravity currents, in terms of velocity, slumping (constant-velocity) regime duration and current morphology. (ii) For intermediate settling, the slumping regime duration decreases to become fully controlled by a particle settling characteristic time. (iii) When settling overcomes the current initial inertia, the slumping (constant-velocity) regime is no longer detected. In the first two regimes, the current velocity increases with the bottom slope, of approximately$35\,\%$between$0^\circ$and$15^\circ$. Finally, our experiments show that the current propagates during the slumping regime with the same shape in the frame of the moving front. Strikingly, the current head is found to be independent of all experimental parameters covered in the present study. We also quantify water entrainment coefficients$E$and compare them with previous literature, hence finding that$E$increases rather linearly with the current Reynolds number.

Funder

Agence Nationale de la Recherche

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3