Electro-convection in a dielectric liquid layer subjected to unipolar injection

Author:

Lacroix J. C.,Atten P.,Hopfinger E. J.

Abstract

The problem of electric charge convection in a dielectric liquid layer of high ionic purity, when subjected to unipolar injection, is in many ways analogous to that of thermal convection in a horizontal fluid layer heated from below, although no formal analogy can be established. The problem treated is intrinsically more nonlinear than the thermal problem. We consider two asymptotic states of convection: one where the whole motion is dominated by viscosity, and one where inertial effects dominate. In each state, two or three spatial regions are distinguished. From the approximate equations that hold in the different regions, information about the variation of the different quantities with distance from the injector is obtained, and further approximations permit us to establish the dependence of the current density ratioI/I0(called theelectric Nusselt number) on the stability parameterT=M2R= εϕ0/Kρν, and on 1/R= ν/Kϕ0, which is an equivalent Prandtl number (ε is the permittivity, ρ the fluid density,Kthe mobility, ν the kinematic viscosity, and ϕ0the applied voltage). In the viscous state, the analysis givesI/I0T½; in the inertial state the lawI/I0∞ (T/R)1/4=M½is obtained. SinceMis independent of the applied voltage, the latter law shows the saturation in the electric Nusselt number observed in earlier experiments. The transition in the states is associated with a transition number (MR)T[gap ] 30, which is an electric Reynolds number, related to an ordinary Reynolds number of about 10.The experimental results, obtained in liquids of very different viscosities and dielectric constants, verify these theoretical predictions; further, they yield more precise numerical coefficients. As for the transition criteria, the experiments confirm that the viscous and inertial effects are of the same order whenRe[gap ] 10. It was also possible to determine roughly the limits of the viscous and inertial states. The viscous analysis remains valid up to a Reynolds number of about 1; the inertial state can be considered valid down to a Reynolds number of 60. Schlieren observations show that the motion has the structure of very stable hexagonal cells at applied voltages just above the critical voltage, which are transformed into unstable filaments when the voltage is increased further. At even higher voltages, the motion finally breaks down into turbulence. It may be of interest to point out that, whenM< 3, the electric Nusselt number approaches 1, which is equivalent to the situation in thermal convection at low Prandtl numbers.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference21 articles.

1. Schneider, J. M. & Watson, P. K. 1970 Electrohydrodynamic stability of space-charge-limited currents in dielectric liquids. I. Theoretical study Phys. Fluids,19,1948–1954.

2. Atten, P. & Gosse, J. P. 1969 Transient of one-carrier injections in polar liquids J. Chem. Phys. 51,2804–2811.

3. Chu, T. Y. & Goldstein, R. J 1973 Turbulent convection in a horizontal layer of water J. Fluid Mech. 60,141–159.

4. Deardorff, J. W. & Willis, G. E. 1967 Investigation of turbulent thermal convection between horizontal plates J. Fluid Mech. 28,675–704.

5. Veronis, G. 1966 Large-amplitude Bénard convection J. Fluid Mech. 26,49–68.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3