Author:
Chu T. Y.,Goldstein R. J.
Abstract
Overall heat transfer and mean temperature distribution measurements have been made of turbulent thermal convection in horizontal water layers heated from below. The Nusselt number is found to be proportional to Ra0·278 in the range 2·76 × 105 < Ra < 1·05 × 108. Eight discrete heat flux transitions are found in this Rayleigh number range. An interferometric method is used to measure the mean temperature distribution for Rayleigh numbers between 3·11 × 105 and 1·86 × 107. Direct visual and photographic observations of the fluctuating interferogram patterns show that the main heat transfer mechanism is the release of thermals from the boundary layers. For relatively low Rayleigh numbers (up to 5 × 105) many of the thermals reach the opposite surface and coalesce to form large masses of relatively warm fluid near the cold surface and masses of cold fluid near the warm surface, resulting in a temperature-gradient reversal. With increasing Rayleigh numbers, fewer and fewer thermals reach the opposite bounding surface and the thermals show persistent horizontal movements near the bounding surfaces. The central region of the layer becomes an isothermal core. The mean temperature distributions for the high Rayleigh number range are found to follow a Z−2 power law over a considerable range, where Z is the distance from the bounding surface. A very limited agreement with the theoretically predicted Z−1 power law is also found.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference26 articles.
1. Willis, G. E. & Deardorff, J. W. 1967 Confirmation and renumbering of the discrete heat flux transitions or Malkus Phys. Fluids,10,1861.
2. Veronis, G. 1966 Large-amplitude Bénard convection.J. Fluid Mech. 26,49.
3. Townsend, A. A. 1959 Temperature fluctuations over a heated surface J. Fluid Mech. 5,209.
4. Tilton, L. W. & Taylor, J. K. 1938 Refractive index and dispersion of distilled water for visible radiation, at temperatures 0 to 60°C Nat. Bur. Stand. J. Res. 20,419.
5. Sparrow, E. M. , Goldstein, R. J. & Jansson, V. 1964 Thermal instability in a horizontal fluid layer; effect of boundary conditions and non-linear temperature profile J. Fluid Mech. 18,513.
Cited by
232 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献