Ageostrophic instabilities of fronts in a channel in a stratified rotating fluid

Author:

GULA J.,PLOUGONVEN R.,ZEITLIN V.

Abstract

It is known that for finite Rossby numbers geostrophically balanced flows develop specific ageostrophic instabilities. We undertake a detailed study of the Rossby–Kelvin (RK) instability, previously studied by Sakai (J. Fluid Mech., vol. 202, 1989, pp. 149–176) in a two-layer rotating shallow-water model. First, we benchmark our method by reproducing the linear stability results obtained by Sakai (1989) and extend them to more general configurations. Second, in order to determine the relevance of RK instability in more realistic flows, simulations of the evolution of a front in a continuously stratified fluid are carried out. They confirm the presence of RK instability with characteristics comparable to those found in the two-layer case. Finally, these simulations are used to study the nonlinear saturation of the RK modes. It is shown that saturation is achieved through the development of small-scale instabilities along the front which modify the mean flow so as to stabilize the RK mode. Remarkably, the developing instability leads to conversion of kinetic energy of the basic flow to potential energy, contrary to classical baroclinic instability.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3