A generalized lifting-line theory for curved and swept wings

Author:

Guermond Jean-Luc

Abstract

A generalized lifting-line theory is developed in inviscid, incompressible, steady flow for curved, swept wings of large aspect ratio. It is shown in this paper that by using the integral formulation of the problem instead of the partial differential equation formulation, it is possible to circumvent the algebraic complications encountered by the previous approaches using the method of the matched asymptotic expansions. At each approximation order the problem is reduced to inverting a classical Carleman type integral equation. The asymptotic solution in terms of circulation is found up to A−1 and A−1 In (A−1). It is very convenient for illustrating the major three-dimensional effects induced on the flow by curvature and yaw angle. The concept of the finite part integrals, introduced by Hadamard (1932), is shown to be very useful for handling elegantly singularities like 1/x|x| or 1/|x| which occur in the course of our developments. Comparisons of the new, simple approach with lifting-surface theories reveal excellent agreements in terms of circulation. Furthermore, a consistent calculation of the three components of the total force acting on the wing is done in the lifting-line context without re-introducing the inner geometry of the wing.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference11 articles.

1. Kida, T. & Miyai, Y. 1978 An alternative treatment of lifting-line theory as a perturbation problem.Z. angew. Math. Phys. 29,591–607.

2. Guermond, J. L. 1988 Une nouvelle approche des développements asymptotiques d'intégrales.C.R. Acad. Sci. Paris I 307,881–886.

3. Prandtl, L. 1921 Application of modern hydrodynamics to aeronautics.NACA Rep. 116.

4. Hadamard, J. 1932 Lectures on Cauchy's Problem in Linear Differential Equation ,pp.133–153.Dover.

5. Guermond, J. L. 1987 A new systematic formula for the asymptotic expansion of singular integrals.Z. angew. Math. Phys. 38,717–729.

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3