Axisymmetric turbulent boundary layer along a circular cylinder at constant pressure

Author:

Afzal Noor,Narasimha R.

Abstract

A constant-pressure axisymmetric turbulent boundary layer along a circular cylinder of radiusais studied at large values of the frictional Reynolds numbera+(based upona) with the boundary-layer thickness δ of ordera. Using the equations of mean motion and the method of matched asymptotic expansions, it is shown that the flow can be described by the same two limit processes (inner and outer) as are used in two-dimensional flow. The condition that the two expansions match requires the existence, at the lowest order, of a log region in the usual two-dimensional co-ordinates (u+,y+). Examination of available experimental data shows that substantial log regions do in fact exist but that the intercept is possibly not a universal constant. Similarly, the solution in the outer layer leads to a defect law of the same form as in two-dimensional flow; experiment shows that the intercept in the defect law depends on δ/a. It is concluded that, except in those extreme situations wherea+is small (in which case the boundary layer may not anyway be in a fully developed turbulent state), the simplest analysis of axisymmetric flow will be to use the two-dimensional laws with parameters that now depend ona+or δ/aas appropriate.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference22 articles.

1. Yu, Y. S. 1958 J. Ship Res. 2,33.

2. Willmarth, W. W. & Yang, C. S. 1970 J. Fluid Mech. 41,47.

3. Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.

4. Singh, K. P. 1973 M.E. thesis,I.I.T., Kanpur.

5. Rotta, J. C. 1962 Progress in Aeronautical Sciences , vol. 2.Pergamon.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3