Wall-pressure fluctuations beneath turbulent boundary layers on a flat plate and a cylinder

Author:

Willmarth W. W.,Yang C. S.

Abstract

Measurements of the turbulent pressure field on the outer surface of a 3 in. diameter cylinder aligned with the flow were made at a point approximately 24 ft. downstream of the origin of the turbulent boundary layer in an air stream of 145 ft./sec. The boundary-layer thickness was 2·78 in. and the Reynolds number based on momentum thickness was 2·62 × 104. The wall-pressure measurements were made with pressure transducers constructed from 0·06 in. diameter lead–zirconate–titanate disks mounted flush with the wall. The measurements including root-mean-square, power spectrum, and correlations of the wall pressure are compared with the existing experimental results for the turbulent pressure field beneath a plane boundary layer. The streamwise convection speed deduced from longitudinal space-time correlation measurements was almost identical to that obtained in the plane boundary layer. The rate of decay of the maxima of the space-time correlation of the pressure produced by the convected eddies was double that in a plane boundary layer. The longitudinal and transverse scales of the pressure correlation were approximately equal (in a plane boundary layer the transverse scale is larger than longitudinal scale) and were one-half or less than the longitudinal scale in the plane boundary layer. It is concluded that the effect of the transverse curvature of the wall is an overall reduction in size of pressure-producing eddies. The reduction in transverse scale of the larger eddies is greater than that of the smaller eddies. In general, the smaller eddies decay more rapidly and produce greater spectral densities at high frequencies owing to the unchanged convection speed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference25 articles.

1. Willmarth, W. W. & Wooldridge, C. E. 1962 J. Fluid Mech. 14,187.

2. Glauert, M. B. & Lighthill, M. J. 1955 Proc. Roy. Soc. A 230,188.

3. Coles, D. 1954 Z.A.M.P. 5,181.

4. Corcos, G. M. 1962 University of California, Institute of Engineering Research, Report, Series no. 183, Issue no. 2; also 1964J. Fluid Mech. 16,353.

5. Richmond, R. L. 1957 Guggenheim Aeronautical Laboratory, California Institute of Technology, Hypersonic Research Project Memo, no. 39, and Thesis, California Institute of Technology.

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3