Detached shear layers in a rotating fluid

Author:

Hide R.,Titman C. W.

Abstract

The occurrence of detached shear layers should, according to straightforward theoretical arguments, often characterize hydrodynamical motions in a rapidly rotating fluid. Such layers have been produced and studied in a very simple system, namely a homogeneous liquid of kinematical viscosity v filling an upright, rigid, cylindrical container mounted coaxially on a turn-table rotating at Ω0 rad/s about a vertical axis, and stirred by rotating about the same axis at Ω1 rad/s a disk of radius a cm and thickness b’ cm immersed in the liquid with its plane faces parallel to the top and bottom end walls of the container. By varying Ω0, Ω1 and a, ranges of Rossby number, the modulus of ε ≡ (Ω1 + Ω0)/½ (Ω1 + Ω0), from 0·01 to 0·3, and Ekman number, E ≡ 2v/a21 + Ω0), from 10−5 to 5 × 10−4 were attained. Although the apparatus was axisymmetric, only when |ε| did not exceed a certain critical value, |εT|, was the flow characterized by the same property of symmetry about the axis of rotation. Otherwise, when |ε| > |εT|, non-axisymmetric flow occurred, having the form in planes perpendicular to the axis of rotation of a regular pattern of waves, M in number, when ε was positive, and of a blunt ellipse when ε was negative.The axial flow in the axisymmetric detached shear layer, and the uniform rate of drift of the wave pattern characterizing the non-axisymmetric flow when ε is positive, depend in relatively simple ways on ε and E. The dependence of|εT| on E can be expressed by the empirical relationship |εT| = AEn, where A = 16·8 ± 2·2 and n = 0·568 ± 0·013 (= (4/7) × (1·000 − (0·005 ± 0·023))!), standard errors, 25 determinations. M does not depend strongly on E but generally decreases with increasing ε.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference7 articles.

Cited by 152 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3