The almost-rigid rotation of viscous fluid between concentric spheres

Author:

Proudman Ian

Abstract

Two concentric spheres are supposed to rotate about the same axis with almost the same angular velocity, so that the viscous stresses over the surfaces of the spheres induce a flow which may be represented by a small perturbation superimposed upon a rigid body rotation of the fluid as a whole. The governing equations are therefore linearized in the magnitude of the perturbation, and it appears that the validity of this linearization is independent of the Reynolds number of the primary rotation. Attention is then restricted to the case in which the Reynolds number is large, the principal object of the note being to exemplify some of the properties of rotating systems at large Reynolds numbers in terms of a particularly simple mathematical model.It is found that the cylindrical surface that touches the inner sphere (the axis being the axis of rotation) is a singular surface in which velocity gradients are very large. Everywhere outside this cylinder, the fluid rotates as a rigid body with the same angular velocity as the outer sphere. Inside the cylinder, the velocity distribution in the central (inviscid) core of the motion is shown to be determined by the velocity distribution in the boundary layers over the spheres, and explicit solutions are obtained for all these velocity distributions. The mechanics of the cylindrical shear layer itself is also discussed, though no explicit solution is obtained in this case.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference5 articles.

1. Squire, H. B. 1953 Aero. Res. Counc., Lond., Rep. no. 16,021.

2. Oseen, C. W. 1910 Ark. f. Mat. Astr. og Fys. 6, no. 29.

3. Ekman, V. W. 1902 Nyt. Mag. Naturv. 40,1.

4. Batchelor, G. K. 1951 Quart. J. Mech. Appl. Math. 4,29.

5. Stewartson, K. 1953 Proc. Camb. Phil. Soc. 49,333.

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3