Author:
BALASUBRAMANIAN KOUSHIK,SUJITH R. I.
Abstract
The role of non-normality and nonlinearity in flame–acoustic interaction in a ducted diffusion flame is investigated in this paper. The infinite rate chemistry model is employed to study unsteady diffusion flames in a Burke–Schumann type geometry. It has been observed that even in this simplified case, the combustion response to perturbations of velocity is non-normal and nonlinear. This flame model is then coupled with a linear model of the duct acoustic field to study the temporal evolution of acoustic perturbations. The one-dimensional acoustic field is simulated in the time domain using the Galerkin technique, treating the fluctuating heat release from the combustion zone as a compact acoustic source. It is shown that the coupled combustion–acoustic system is non-normal and nonlinear. Further, calculations showed the occurrence of triggering; i.e. the thermoacoustic oscillations decay for some initial conditions whereas they grow for some other initial conditions. It is shown that triggering occurs because of the combined effect of non-normality and nonlinearity. For such a non-normal system, resonance or ‘pseudoresonance’ may occur at frequencies far from its natural frequencies. Non-normal systems can be studied using pseudospectra, as eigenvalues alone are not sufficient to predict the behaviour of the system. Further, both necessary and sufficient conditions for the stability of a thermoacoustic system are presented in this paper.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference40 articles.
1. Vector Eigenfunction Expansions for Plane Channel Flows
2. Polifke W. 2004 Numerical techniques for identification of acoustic multi-ports. In Advances in Aeroacoustics and Applications, VKI Lecture Series Monographs 2004–05. Von Karman Institute, Brussels.
3. A mostly linear model of transition to turbulence
4. An elementary discussion of propellant flame geometry
5. Non-linear response of a generalized Rijke tube
Cited by
121 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献