Turbulence measurements around a mild separation bubble and downstream of reattachment

Author:

Alving Amy E.,Fernholz H. H.

Abstract

This paper describes the behaviour of a turbulent boundary layer on a smooth, axisymmetric body exposed to an adverse pressure gradient of sufficient strength to cause a short region of mean reverse flow ('separation’). The pressure distribution is tailored such that the boundary layer reattaches and then develops in a nominally zero pressure gradient. Hot-wire and pulsed-wire measurements are presented over the separated region and downstream of reattachment. The response of the turbulence quantities to separation and to reattachment is discussed, with emphasis on the relaxation behaviour after reattachment. Over the separation bubble, the response is characteristic of that seen by other workers: the Reynolds stresses in the inner region are reduced and stress peaks develop away from the wall. At reattachment, the skewness of the fluctuating wall shear stress vanishes, as it is known to do at separation. After reattachment, the outer-layer stresses decay towards levels typical of unperturbed boundary layers. But the inner-layer relaxation is unusual. As the viscous wall stress increases downstream of reattachment, the recovery does not start at the wall and travel outward via the formation of an ‘internal’ layer, the process observed in many other relaxing flows. In fact, the inner layer responds markedly more slowly than the outer layer, even though response times are shortest near the wall. It is concluded that the large-scale, outer structures in the turbulent boundary layer survive the separation process and interfere with the regeneration of Reynolds stresses in the inner region after reattachment. This behaviour continues for at least six bubble lengths (20 boundary-layer thicknesses) after reattachment and is believed to have profound implications for our understanding of the interaction between inner and outer layers in turbulent boundary layers.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference39 articles.

1. Durbin, P. A. & Belcher, S. E. 1992 Scaling of adverse-pressure-gradient turbulent boundary layers.J. Fluid Mech. 238,699–722.

2. Menter, F. R. 1992 Performance of popular turbulence models for attached and separated adverse pressure gradient flows.AIAA J. 30,2066–2072.

3. Bradbury, L. J. S. & Castro, I. P. 1971 A pulsed-wire technique for velocity measurements in highly turbulent flows.J. Fluid Mech. 49,657–691.

4. Schlichting, H. 1979 Boundary Layer Theory .McGraw-Hill.

5. Stratford, B. S. 1959b An experimental flow with zero skin friction throughout its region of pressure rise.J. Fluid Mech. 5,17–35.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3