Transient growth in vortices with axial flow

Author:

HEATON C. J.,PEAKE N.

Abstract

We investigate transient growth in high-Reynolds-number vortices with axial flow. Manycases of vortex instability are not fully explained by strong exponential instability modes, and transient growth could offer an alternative route to breakdown in such cases. Strong transient growth is found, in agreement with previous studies. We first discuss the problem by reference to ducted vortices which model aeroengine flow. The transient growth is inviscid in character, and in this paper we specifically interpret it as an effect of the inviscid continuous spectrum. The relevant inviscid theory explains new scalings which we find for the transient growth, which are generalizations of the quadratic scaling seen previously in two-dimensional flows and non-swirling pipe flows. We then turn to a second case, of interest for vortex breakdown, the Batchelor vortex, and present calculations of the transient growth. Large growth is possible, especially for the helical modes (with azimuthal wavenumber |m| = 1). The general trends are complicated by a number ofissues, including a long-wavelength effect and a resonance effect, both of which were recently discovered for a vortex without axial flow and are found here to be present in the Batchelor vortex also. Overall, the results suggest that strong transient effects are present in the moderate- to high-swirl regime of practical interest (swirl number q ≳ 2). Foraxisymmetric (m = 0) and higher (|m| > 1) modes, however, transient effects are not found to be significant.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3