Centre modes in inviscid swirling flows and their application to the stability of the Batchelor vortex

Author:

HEATON C. J.

Abstract

We identify a family of centre-mode disturbances to inviscid swirling flows such as jets, wakes and other vortices. The centre modes form an infinite family of modes, increasingly concentrated near to the symmetry axis of the mean flow, and whose frequencies accumulate to a single point in the complex plane. This asymptotic accumulation allows analytical progress to be made, including a theoretical stability boundary, inO(1) parameter regimes. The modes are located close to the continuous spectrum of the linearized Euler equations, and the theory is closely related to that of the continuous spectrum. We illustrate our analysis with the inviscid Batchelor vortex, defined by swirl parameterq. We show that the inviscid instabilities found in previous numerical studies are in fact the first members of an infinite set of centre modes of the type we describe. We investigate the inviscid neutral curve, and find good agreement of the neutral curve predicted by the analysis with the results of numerical computations. We find that the unstable region is larger than previously reported. In particular, the value ofqabove which the inviscid vortex stabilizes is significantly larger than previously reported and in agreement with a long-standing theoretical prediction.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3