The rise and fall of turbulent fountains: a new model for improved quantitative predictions

Author:

CARAZZO G.,KAMINSKI E.,TAIT S.

Abstract

Turbulent fountains are of major interest for many natural phenomena and industrial applications, and can be considered as one of the canonical examples of turbulent flows. They have been the object of extensive experimental and theoretical studies that yielded scaling laws describing the behaviour of the fountains as a function of source conditions (namely their Reynolds and Froude numbers). However, although such scaling laws provide a clear understanding of the basic dynamics of the turbulent fountains, they usually rely on more or lessad hocdimensionless proportionality constants that are scarcely tested against theoretical predictions. In this paper, we use a systematic comparison between the initial and steady-state heights of a turbulent fountain predicted by classical top-hat models and those obtained in experiments. This shows scaling agreement between predictions and observations, but systematic discrepancies regarding the proportionality constant. For the initial rise of turbulent fountains, we show that quantitative agreement between top-hat models and experiments can be achieved by taking into account two factors: (i) the reduction of entrainment by negative buoyancy (as quantified by the Froude number), and (ii) the fact that turbulence is not fully developed at the source at intermediate Reynolds number. For the steady-state rise of turbulent fountains, a new model (‘confined top-hat’) is developed to take into account the coupling between the up-flow and the down-flow in the steady-state fountain. The model introduces three parameters, calculated from integrals of experimental profiles, that highlight the dynamics of turbulent entrainment between the up-flow and the down-flow, as well as the change of buoyancy flux with height in the up-flow. The confined top-hat model for turbulent fountains achieves good agreement between theoretical predictions and experimental results. In particular, it predicts a systematic increase of the ratio between the initial and steady-state heights of turbulent fountains as a function of their source Froude number, an observation that was not handled properly in previous models.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3