Heat transfer from a hot film in reversing shear flow

Author:

Pedley T. J.

Abstract

The two-dimensional thermal boundary layer over a finite hot film embedded in a plane insulating wall, with a shear flow over it which reverses its direction, is analysed approximately using methods similar to those previously developed for viscous boundary layers (Pedley 1976). The heat transfer from the film is calculated both for uniformly decelerated and for oscillatory wall shear, and application is made to predict the response of hot-film anemometers actually used to measure oscillatory velocities in water and blood. The results predict that the velocity amplitude measured on the assumption of a quasi-steady response will depart from the actual amplitude at values of the frequency parameter St greater than about 0·3 (St = ΩX0/U0, where Ω = frequency, U0 = mean velocity, X0 = distance of hot film from the leading edge of the probe). This is in good agreement with experiment. So too is the shape of the predicted anemometer output as a function of time throughout a complete cycle, for cases when the response is not quasi-steady. However, there is a significant phase lead between the predicted and the experimental outputs. Various possible reasons for this are discussed; no firm conclusions are reached, but the most probable cause lies in the three-dimensionality of the velocity and temperature fields, since the experimental hot films are only about 2·5 times as broad as they are long, and are mounted on a cylinder not a flat plate.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference11 articles.

1. Rosenhead, L. (ed.)1963 Laminar Boundary Layers. Oxford:Clarendon Press.

2. Springer, S. G. 1974 The solution of heat-transfer problems by the Wiener-Hopf technique. II. Trailing edge of a hot film.Proc. Roy. Soc. A 337,395.

3. Liepmann, H. W. & Skinner, G. T. 1954 Shearing-stress measurements by use of a heated element.N.A.C.A. Tech. Note, no. 3268.

4. Lévéque, M. A. 1928 Transmission de chaleur par convection.Ann. des Mines,13,283.

5. Pedley, T. J. 1972b Two-dimensional boundary layers in a free stream which oscillates without reversing.J. Fluid Mech. 55,359.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3