Axial flow in trailing line vortices

Author:

Batchelor G. K.

Abstract

A characteristic feature of a steady trailing line vortex from one side of a wing, and of other types of line vortex, is the existence of strong axial currents near the axis of symmetry. The purpose of this paper is to account in general terms for this axial flow in trailing line vortices. the link between the azimuthal and axial components of motion in a steady line vortex is provided by the pressure; the radial pressure gradient balances the centrifugal force, and any change in the azimuthal motion with distance x downstream produces an axial pressure gradient and consequently axial acceleration.It is suggested, in a discussion of the evolution of an axisymmetric line vortex out of the vortex sheet shed from one side of a wing, that the two processes of rolling-up of the sheet and of concentration of the vorticity into a smaller cross-section should be distinguished; the former always occurs, whereas the latter seems not to be inevitable.In § 4 there is given a similarity solution for the flow in a trailing vortex far downstream where the departure of the axial velocity from the free stream speed is small. The continual slowing-down of the azimuthal motion by viscosity leads to a positive axial pressure gradient and consequently to continual loss of axial momentum, the asymptotic variation of the axial velocity defect at the centre being as x−1 log x.The concept of the drag associated with the core of a trailing vortex is introduced, and the drag is expressed as an integral over a transverse plane which is independent of x. This drag is related to the arbitrary constant appearing in the above similarity solution.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference6 articles.

1. Birkhoff, G. & Fisher, J. 1959 Rendiconti del Circolo Matematico di Palermo,8, serie II.

2. Roy, M. 1952 C. R. Acad. Sci., Paris,26,159.

3. Newman, B. G. 1959 Aero. Quart 10,149.

4. Hama, F. R. & Burke, E. R. 1960 University of Maryland Tech. Note BN-220.

5. Mangler, K. W. & Smith, J. H. B. 1959 Proc. Roy. Soc. A,251,200.

Cited by 522 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3