Vortex Characterization and Parametric Study of Miniature Vortex Generators and Their Near-Field Boundary Layer Effects

Author:

De Baets Gilles1ORCID,Szabó András2ORCID,Nagy Péter Tamás2,Paál György2,Vanierschot Maarten13ORCID

Affiliation:

1. Department of Mechanical Engineering, KU Leuven, B-3001 Leuven, Belgium

2. Department of Hydrodynamic Systems, Budapest University of Technology and Economics, H-1111 Budapest, Hungary

3. Material Science, Innovation and Modelling (MaSIM), North-West University, Mmabatho 2745, South Africa

Abstract

Delaying the onset of laminar-turbulent transition is an attractive method in reducing skin friction drag, especially on streamlined bodies where Tollmien–Schlichting instabilities are the dominating mechanism for transition. Miniature Vortex Generators (MVGs) offer an effective approach to attenuate these instabilities by generating counter-rotating vortex pairs. They are placed in pairs within an array and resemble small-winglet-type elements. The conventional methodology involves adjusting the MVG parameters and conducting computationally expensive DNS and/or downstream stability analyses to assess their effectiveness. However, analyzing the vortex parameters of MVG-generated vortices can potentially guide a more targeted approach to modifying the MVG parameters and identifying the critical factors for transition delay. Therefore, this study investigates the changes in three primary MVG parameters, namely inner distance, periodicity, and height, and utilizes computational fluid dynamics (CFDs) analysis to create a dataset that examines the characteristics of the generated counter-rotating vortex pairs and their potential in drag reduction. The objective is to establish correlations among these parameters and their influence on delaying transition. The results show that there is an optimal ratio between the MVG height and boundary layer thickness. Higher MVGs cause a decrease in the vortex radius and an increase in the amount of circulation, raising the likeliness of bypass transition. The derived correlations between the different MVG parameters show that the vortex radius is the most critical one and is hence an important parameter in the drag reduction potential.

Funder

Celsa

Publisher

MDPI AG

Reference26 articles.

1. Multi-field coupling vibration patterns of the multiphase sink vortex and distortion recognition method;Li;Mech. Syst. Signal Process.,2024

2. Wells, C.S. (1969). On the Many Faces of Transition. Viscous Drag Reduction, Springer.

3. Transient growth: A factor in bypass transition;Reshotko;Phys. Fluids,2001

4. Über die Entstehung der Turbulenz. 1. Mitteilung;Tollmien;Nachrichten Von Der Ges. Der Wiss. Göttingen Math.-Phys. Kl.,1928

5. Physical Mechanisms of Laminar-Boundary-Layer Transition;Kachanov;Annu. Rev. Fluid Mech.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3