Lubrication theory in highly compressible porous media: the mechanics of skiing, from red cells to humans

Author:

FENG J.,WEINBAUM S.

Abstract

A generalized lubrication theory that is applicable to highly deformable porous layers is developed using an effective-medium approach (Brinkman equation). This theory is valid in the limit where the structure is so compressible that the normal forces generated by elastic compression of the fibres comprising the solid phase are negligible compared to the pressure forces generated within the porous layer. We assume that the deformation of the solid phase is primarily due to boundary compression as opposed to the motion of the fluid phase. A generalized Reynolds equation is derived in which the spatial variation of the Darcy permeability parameter, α = H/√Kp, due to the matrix compression is determined by new local hydrodynamic solutions for the flow through a simplified periodic fibre model for the deformed matrix. Here H is the undeformed layer thickness and Kp the Darcy permeability. This simplified model assumes that the fibres compress linearly with the deformed gap height in the vertical direction, but the fibre spacing in the horizontal plane remains unchanged. The model is thus able to capture the essential nonlinearity that results from large-amplitude deformations of the matrix layer.The new theory shows that there is an unexpected striking similarity between the gliding motion of a red cell moving over the endothelial glycocalyx that lines our microvessels and a human skier or snowboarder skiing on compressed powder. In both cases one observes an order-of-magnitude compression of the matrix layer when the motion is arrested and predicts values of α that are of order 100. In this large-α limit one finds that the pressure and lift forces generated within the compressed matrix are four orders-of-magnitude greater than classical lubrication theory. In the case of the red cell these repulsive forces may explain why red cells do not experience constant adhesive molecular interactions with the endothelial plasmalemma, whereas in the case of the skier or snowboarder the theory explains why a 70 kg human can glide through compressed powder without sinking to the base as would occur if the motion is arrested. The principal difference between the tightly fitting red cell and the snowboarder is the lateral leakage of the excess pressure at the edges of the snowboard which greatly diminishes the lift force. A simplified axisymmetric model is presented for the red cell to explain the striking pop out phenomenon in which a red cell that starts from rest will quickly lift off the surface and then glide near the edge of the glycocalyx and also for the unexpectedly large apparent viscosity measured by Pries et al. (1994) in vivo.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3