Assessing the Mechanisms Thought to Govern Ice and Snow Friction and Their Interplay With Substrate Brittle Behavior

Author:

Lever James H.,Asenath-Smith Emily,Taylor Susan,Lines Austin P.

Abstract

Sliding friction on ice and snow is characteristically low at temperatures common on Earth’s surface. This slipperiness underlies efficient sleds, winter sports, and the need for specialized tires. Friction can also play a micro-mechanical role affecting ice compressive and crushing strengths. Researchers have proposed several mechanisms thought to govern ice and snow friction, but directly validating the underlying mechanics has been difficult. This may be changing, as instruments capable of micro-scale measurements and imaging are now being brought to bear on friction studies. Nevertheless, given the broad regimes of practical interest (interaction length, temperature, speed, pressure, slider properties, etc.), it may be unrealistic to expect that a single mechanism accounts for why ice and snow are slippery. Because bulk ice, and the ice grains that constitute snow, are solids near their melting point at terrestrial temperatures, most research has focused on whether a lubricating water film forms at the interface with a slider. However, ice is extremely brittle, and dry-contact abrasion and wear at the front of sliders could prevent or delay a transition to lubricated contact. Also, water is a poor lubricant, and lubricating films thick enough to separate surface asperities may not form for many systems of interest. This article aims to assess our knowledge of the mechanics underlying ice and snow friction. We begin with a brief summary of the mechanical behavior of ice and snow substrates, behavior which perhaps has not received sufficient attention in friction studies. We then assess the strengths and weaknesses of five ice- and snow-friction hypotheses: pressure-melting, self-lubrication, quasi-liquid layers, abrasion, and ice-rich slurries. We discuss their assumptions and review evidence to determine whether they are consistent with the postulated mechanics. Lastly, we identify key issues that warrant additional research to resolve the specific mechanics and the transitions between them that control ice and snow friction across regimes of practical interest.

Funder

Engineer Research and Development Center

Publisher

Frontiers Media SA

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,General Materials Science

Reference129 articles.

1. Parameters Affecting the Kinetic Friction of Ice;Akkok;J. Tribology,1987

2. Ski Gliding and Water Film;Ambach;Cold Regions Sci. Technol.,1981

3. Mechanical Strength of Polycrystalline Ice under Uniaxial Compression;Arakawa;Cold Regions Sci. Technol.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3