An asymptotic expansion for the vortex-induced vibrations of a circular cylinder

Author:

MELIGA PHILIPPE,CHOMAZ JEAN-MARC

Abstract

This paper investigates the vortex-induced vibrations (VIV) of a spring-mounted circular cylinder. We compute analytically the leading-order equations describing the nonlinear interaction of the fluid and structure modes by carrying out an asymptotic analysis of the Navier–Stokes equations close to the threshold of instability of the fluid-only system. We show that vortex-shedding can occur at subcritical Reynolds numbers as a result of the coupled system being linearly unstable to the structure mode. We also show that resonance occurs when the frequency of the nonlinear limit cycle matches the natural frequency of the cylinder, the displacement being then in phase with the flow-induced lift fluctuations. Using an extension of this model meant to encompass the effect of the low-order added-mass and damping forces induced by the displaced fluid, we show that the amount of energy that can be extracted from the flow can be optimized by an appropriate choice of the structural parameters. Finally, we suggest a possible connection between the present ‘exact’ model and the empirical wake oscillator model used to study VIV at high Reynolds numbers. We show that for the low Reynolds numbers considered here, the effect of the structure on the fluid can be represented by a first coupling term proportional to the cylinder acceleration in the fluid equation, and by a second term of lower magnitude, which can stem either from an integral term or from a term proportional to the third derivative of the cylinder position.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3