Intrinsic features of flow-induced stability of a square cylinder

Author:

Lin CuitingORCID,Alam Md. MahbubORCID

Abstract

Vortex-induced vibrations and galloping of an elastically mounted square cylinder are investigated for cylinder mass ratio m* = 2–50, damping ratio ζ = 0–1.0, mass-damping ratio m*ζ = 0–50 and flow reduced velocity Ur = 1–80. We home in on the effects of m*, ζ, m*ζ, $({m^\ast } + m_{a\textrm{0}}^\ast )\zeta$ and $({m^\ast } + m_{ae}^\ast )\zeta$ on the critical reduced velocity Urc marking the onset of galloping, where $m_{a\textrm{0}}^\ast $ is the quiescent-fluid added mass ratio and $m_{ae}^\ast $ is the effective added mass ratio. Vibration responses, forces, vibration frequencies and added mass ratios are studied and discussed. The different branches of vortex-induced vibrations have different dependencies of $m_{ae}^\ast $ on Ur. The $m_{ae}^\ast $ in the initial branch is positive and drops rapidly with Ur, but that in the lower branch is negative and declines gently. In the galloping regime, $m_{ae}^\ast $ jumps from negative to positive at the onset of galloping, declining slightly with increasing Ur. Our results and prediction equations show that when ζ = 0, Urc is independent of m* for m* ≥ 5, albeit slightly higher for m* = 3. The latter is ascribed to mode competition. When ζ > 0, Urc linearly increases with increasing ζ. Detailed analysis substantiates that m*ζ or $({m^\ast } + m_{a\textrm{0}}^\ast )\zeta$ does not serve as the unique criterion to predict the galloping occurrence. Here, we propose a new combined mass-damping parameter $({m^\ast } + m_{ae}^\ast )\zeta$ in the relationship between galloping onsets and structural properties, which successfully scales all data of Urc at different m* and ζ values.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3