Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall

Author:

LEE JAE HWA,SUNG HYUNG JIN,KROGSTAD PER-ÅGE

Abstract

Direct numerical simulation (DNS) of a spatially developing turbulent boundary layer (TBL) over a wall roughened with regularly arrayed cubes was performed to investigate the effects of three-dimensional (3-D) surface elements on the properties of the TBL. The cubes were staggered in the downstream direction and periodically arranged in the streamwise and spanwise directions with pitches of px/k = 8 and pz/k = 2, where px and pz are the streamwise and spanwise spacings of the cubes and k is the roughness height. The Reynolds number based on the momentum thickness was varied in the range Reθ = 300−1300, and the roughness height was k = 1.5θin, where θin is the momentum thickness at the inlet, which corresponds to k/δ = 0.052–0.174 from the inlet to the outlet; δ is the boundary layer thickness. The characteristics of the TBL over the 3-D cube-roughened wall were compared with the results from a DNS of the TBL over a two-dimensional (2-D) rod-roughened wall. The introduction of cube roughness affected the turbulent Reynolds stresses not only in the roughness sublayer but also in the outer layer. The present instantaneous flow field and linear stochastic estimations of the conditional averaging showed that the streaky structures in the near-wall region and the low-momentum regions and hairpin packets in the outer layer are dominant features in the TBLs over the 2-D and 3-D rough walls and that these features are significantly affected by the surface roughness throughout the entire boundary layer. In the outer layer, however, it was shown that the large-scale structures over the 2-D and 3-D roughened walls have similar characteristics, which indicates that the dimensional difference between the surfaces with 2-D and 3-D roughness has a negligible effect on the turbulence statistics and coherent structures of the TBLs.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3