Coupling modes between two flapping filaments

Author:

JIA LAI-BING,LI FANG,YIN XIE-ZHEN,YIN XIE-YUAN

Abstract

The flapping coupling between two filaments is studied theoretically and experimentally in this paper. A temporal linear instability analysis is carried out based on a simplified hydrodynamic model. The dispersion relationship between the eigen-frequency ω and wavenumberkis expressed by a quartic equation. Two special cases of flapping coupling, i.e. two identical filaments having the same length and two filaments having different lengths, are studied in detail. In the case of two identical filaments, the theoretical analysis predicts four coupling modes, i.e. the stretched-straight mode, the antisymmetrical in-phase mode, the symmetrical out-of-phase mode and the indefinite mode. The theory also predicts the existence of an eigenfrequency jump during transition between the in-phase and out-of-phase modes, which has been observed in previous experiments and numerical simulations. In the case of two filaments having different lengths, four modes similar to those in the former case are identified theoretically. The distribution of coupling modes for both the cases is shown in two planes. One is a dimensionless plane ofSvs.U, whereSis the density ratio of solid filament to fluid andU2is the ratio of fluid kinetic energy to solid elastic potential energy. The other is a dimensional plane of the half-distance (h) between two filaments vs. the filament length (L). Relevant experiments are carried out in a soap-film tunnel and the stable and unstable modes are observed. Theory and experiment are compared in detail. It should be noted that the model used in our analysis is a very simplified one that can provide intuitional analytical results of the coupling modes as well as their qualitative distributions. The factors neglected in our model, such as vortex shedding, viscous and nonlinear effects, do not allow the model to predict results precisely consistent with the experiments. Moreover, the Strouhal numbers of the flapping filaments are found to be generally around a fixed value in the experiments for both cases, implying that the filaments try to maintain a lower potential energy state.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3