Passive bionic motion of a flexible film in the wake of a circular cylinder: chaos and periodicity, flow–structure interactions and energy evolution

Author:

Duan FanORCID,Wang Jin-JunORCID

Abstract

The self-sustained interactions between a flexible film and periodic vortices epitomize the spirit of fish swimming and flag flapping in nature, involving intricate patterns of flow–structure coupling. Here, we comprehensively investigate the multiple coupling states of a film in the cylinder wake mainly with experiments, complemented by theoretical solutions and nonlinear dynamical analyses. Four regimes of film motion states are identified in the parameter space spanned by the reduced velocity and the length ratio. These regimes are (i) keeping stationary, (ii) deflection flutter, (iii) hybrid flutter and (iv) periodic large-amplitude flapping, each governed by a distinct coupling mechanism, involving regular and irregular Kármán vortices, local instability of the elongated shear layers and 2P mode vortex shedding. The film futtering in regimes (ii) and (iii) is substantiated to be chaotic and bears a resemblance to the ‘entraining state’ of fish behind an obstacle in the river. The periodic flapping in regime (iv) manifests itself in an amalgam of standing and travelling waves, and has intrinsic relations to the ‘Kármán gaiting’ of fish in periodic vortices. With the spatiotemporal reconstruction for the periodic flapping, we procure the energy distributions on the film, revealing the energy transfer processes between the film and the large-scale vortices. The findings unequivocally indicate that the flow–structure interaction during the energy-release stage of the film is more intense than that during the energy-extraction stage. Given the similarities, the mathematical and physical methods presented in this work are also applicable to the research on biological undulatory locomotion.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3