Author:
CERRETELLI C.,WILLIAMSON C. H. K.
Abstract
In this paper, we study the interaction of two co-rotating trailing vortices. It is
well-known that vortices of like-sign ultimately merge to form a single vortex, and
there has been much work on measuring and predicting the initial conditions for the
onset of merger, especially concerning the critical vortex core radius. However, the
physical mechanism causing this merger has received little attention. In this work,
we directly measure the structure of the antisymmetric vorticity field that causes the
co-rotating vortices to be pushed towards each other during merger. We discover
that the form of the antisymmetric vorticity comprises two counter-rotating vortex
pairs, whose induced velocity field readily pushes the two centroids together. The
merging velocity computed from the antisymmetric vorticity field agrees closely with
the merging velocity measured directly from the total (original) flow field.The co-rotating vortex pair evolves through four distinct phases. The initial stage
comprises a diffusive growth, which can be either viscous or turbulent. In either case,
the number of turns that they rotate around one another until the vortices start
to merge increases with Reynolds number (Re). If one observes the streamlines in
a rotating reference frame (moving with the vortices), then one finds an inner and
outer recirculating region of the flow bounded by a separatrix streamline. When the
vortices grow large enough in the first stage, diffusion across the separatrix places
vorticity into the outer recirculating region of the flow, and this leads to the generation
of the antisymmetric vorticity, causing convective merger. This second (convective)
stage corresponds to the motion of the vortex centroids towards each other, and is a
process which is almost independent of viscosity. During the late part of this stage,
the antisymmetric vorticity is diminished by a symmetrization process, and the final
merging into one vorticity structure is achieved by a second diffusive stage. The fourth
and ultimate phase is one where the merged vortex core grows by diffusion.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
201 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献