Vortex merging in strongly coupled dusty plasmas using a visco-elastic fluid model

Author:

Dharodi Vikram1ORCID,Kostadinova Evdokiya1ORCID

Affiliation:

1. Department of Physics, Auburn University , Auburn, Alabama 32849, USA

Abstract

This work is a numerical study of the two-dimensional merging phenomena between two Lamb–Oseen co-rotating vortices in a viscoelastic fluid. We use a generalized hydrodynamics fluid model to study vortex merging in a strongly coupled dusty plasma medium, which exhibits characteristics similar to a viscoelastic fluid. Several aspects influencing the merging phenomena are considered: the aspect ratio (core size/separation distance), the relative circulation strengths of each vortex, and the coupling strength of the medium. Unlike classical hydrodynamic fluids, we find that for viscoelastic fluids, shear waves facilitate the merging events even for widely separated vortices. The merging process is accelerated in media with higher coupling strengths and the resultant vortex shape decays more quickly as well. It is also found that varying either the vortex scale or the vortex circulation strength can result in a similar merging process, where a smaller (larger) vortex acts like a vortex with weaker (stronger) circulation. Finally, we show that a Poynting-like conservation theorem is satisfied for the examined merging processes.

Funder

NSF

NSF EPSCoR OIA

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3