On prediction of the turbulent flow over a wavy boundary

Author:

Davis Russ E.

Abstract

The importance of fluctuating turbulent stresses in the flow over a wave is examined. It is shown that anisotropic stresses, which are most likely to be turbulent Reynolds stresses, are essential to the process of energy flow to the wave. Two fundamentally different methods of predicting fluctuating turbulent Reynolds stresses are examined. One method makes use of a phenomenological closure of the conservation equation for the turbulent Reynolds stresses and is similar to the turbulent boundary-layer calculation scheme of Bradshaw, Ferriss & Atwell (1967). The second method is based on the assumption that the turbulent stresses are determined by the recent history of velocity shear experienced by a fluid parcel and results in a viscoelastic constitutive relation for the turbulence; in the limit of shortest’ memory’ this relation becomes the eddy viscosity model proposed by Hussain & Reynolds (1970). Comparison of predicted and measured values of surface pressure indicates that the eddy viscoelasticity model can explain measured pressure distributions but the comparison is not conclusive. Suggestions for further measurements are made.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference16 articles.

1. Lin, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.

2. Dobson, F. W. 1969 Observations of normal pressure on wind generated sea waves. Ph.D. dissertation,Department of Physics, University British Columbia.

3. Lumley, J. L. & Panofsky, H. A. 1964 The Structure of Atmospheric Turbulence. Wiley.

4. Datis, R. E. 1970 On the turbulent flow over a wavy boundary.J. Fluid Mech. 42,721.

5. Volkov, Iu. A. 1969 Spectra of velocity and temperature fluctuations in the airflow above the agitated sea surface.Izv. Atmos. Oceanic Phys. 5,1251.

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3