The Dynamical Coupling of Wind-Waves and Atmospheric Turbulence: A Review of Theoretical and Phenomenological Models

Author:

Ayet AlexORCID,Chapron BertrandORCID

Abstract

AbstractWhen wind blows over the ocean, short wind-waves (of wavelength smaller than 10 m) are generated, rapidly reaching an equilibrium with the overlying turbulence (at heights lower than 10 m). Understanding this equilibrium is key to many applications since it determines (i) air–sea fluxes of heat, momentum and gas, essential for numerical models; (ii) energy loss from wind to waves, which regulates how swell is generated and how energy is transferred to the ocean mixed layer and; (iii) the ocean surface roughness, visible from remote sensing measurements. Here we review phenomenological models describing this equilibrium: these models couple a turbulence kinetic energy and wave action budget through several wave-growth processes, including airflow separation events induced by breaking waves. Even though the models aim at reproducing measurements of air–sea fluxes and wave growth, some of the observed variability is still unexplained. Hence, after reviewing several state-of-the-art phenomenological models, we discuss recent numerical experiments in order to provide hints about future improvements. We suggest three main directions, which should be addressed both through dedicated experiments and theory: (i) a better quantification of the variability wind-wave growth and of the role played by the modulation of short and breaking wind-waves by long wind-waves; (ii) an improved understanding of the imprint of wind-waves on turbulent coherent structures and; (iii) a quantification of the interscale interactions for a realistic wind-wave sea, where wind-and-wave coupling processes coexist at multiple time and space scales.

Funder

Direction Générale de l’Armement

Région Bretagne

ANR

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Underestimation of strong wind speeds offshore in ERA5: evidence, discussion and correction;Wind Energy Science;2024-08-19

2. Impact of swell waves on atmospheric surface turbulence: wave–turbulence decomposition methods;Wind Energy Science;2024-08-02

3. Underestimation of extremes in sea level surge reconstruction;Scientific Reports;2024-06-27

4. Data-driven met-ocean model for offshore wind energy applications;Journal of Physics: Conference Series;2024-06-01

5. Deep Learning Inversion of Ocean Wave Spectrum from SAR Satellite Observations;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3