Boundary interactions for two-dimensional granular flows. Part 1. Flat boundaries, asymmetric stresses and couple stresses

Author:

Campbell Charles S.

Abstract

The behaviour of a granular flow at a boundary cannot be specified independently of what is happening in the rest of the flow field. This paper describes a study of two fictitious, but instructive, flat boundary types using a computer simulation of a two-dimensional granular flow with the goal of trying to understand the possible effects of the boundary on the flow. The two boundary conditions, Type A and Type B, differ largely in the way that they apply torques to the flow particles. During a particle–wall collision, the Type A boundary applies the force at the particle surface, thus applying the largest mechanistically possible torque to the particle, while the Type B boundary applies the force directly to the particle centre, resulting in the application of zero torque. Though a small change on continuum scales (i.e. the point at which the force is applied has only been moved by a particle radius) it makes a huge difference to the macroscopic behaviour of the system. Generally, it was found that, near boundaries, large variations in continuum properties occur over distances of a particle diameter, a non-continuum scale, throwing into doubt whether boundaries may be accurately modelled via continuum mechanics. Finally, the large torques applied to the particles by the Type A boundary induce asymmetries in the stress tensor, which, in these steady flows, are balanced by gradients in a couple stress tensor. Thus, near boundaries, a frictional granular material must be modelled as a polar fluid.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference25 articles.

1. Savage, S. B. & Sayed, M. 1984 Stresses developed by dry cohesionless granular materials in an annular shear cell.J. Fluid Mech. 142,391–430.

2. Campbell, C. S. 1988 Boundary interactions for two-dimensional granular flows: asymmetric stresses and couple stresses. In Micromechanics of Granular Materials (ed. M. Satake & J. T. Jenkins ), pp.163–174.Elsevier.

3. Campbell, C. S. & Gong, A. 1986 The stress tensor in a two-dimensional granular shear flow.J. Fluid Mech. 164,107–125.

4. Hanes, D. M. , Jenkins, J. T. & Richman, M. W. 1988 The thickness of steady plane shear flows of circular disks driven by identical boundaries.Trans. ASME E:J. Appl. Mech. 55,969–974.

5. Campbell, C. S. 1989 The stress tensor for simple shear flows of a granular material.J. Fluid Mech. 203,449–473.

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3