Size segregation in compressible granular shear flows of binary particle systems

Author:

Gilberg DominikORCID,Steiner Konrad

Abstract

AbstractThis paper deals with the modelling and simulation of segregation in granular materials. The basis is a hydrodynamic model for granular material flows, which is extended to capture the dynamic process of segregation in shear flows of systems with small and large particles. The granular flow equations consist of a set of compressible Navier–Stokes-like equations as well as an equation for the granular temperature. With the help of the granular temperature equation, the granular flow equations are able to cover a wide range of regimes, starting from dilute to arresting flows. However, this paper focuses on dry granular shear flows. It extends this hydrodynamic system in a dense shear flow regime by a segregation equation using the framework of mixture theory. Special focus is lain on the segregation direction. A procedure from mechanics is adapted to obtain the segregation direction from the granular flow system independent of the choice of the coordinate system. In particular, this is done in three-dimensional space. Due to the compressibility of the granular flow system and the structure of the derived segregation equation, solving the segregation equation requires special numerical treatment. Therefore, a suitable numerical scheme is presented which prevents the system from reaching unphysical states.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Mechanics of Materials,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3