Post-stall flow control on an airfoil by local unsteady forcing

Author:

WU JIE-ZHI,LU XI-YUN,DENNY ANDREW G.,FAN MENG,WU JAIN-MING

Abstract

By using a Reynolds-averaged two-dimensional computation of a turbulent flow over an airfoil at post-stall angles of attack, we show that the massively separated and disordered unsteady flow can be effectively controlled by periodic blowing–suction near the leading edge with low-level power input. This unsteady forcing can modulate the evolution of the separated shear layer to promote the formation of concentrated lifting vortices, which in turn interact with trailing-edge vortices in a favourable manner and thereby alter the global deep-stall flow field. In a certain range of post-stall angles of attack and forcing frequencies, the unforced random separated flow can become periodic or quasi-periodic, associated with a significant lift enhancement. This opens a promising possibility for flight beyond the static stall to a much higher angle of attack. The same local control also leads, in some situations, to a reduction of drag. On a part of the airfoil the pressure fluctuation is suppressed as well, which would be beneficial for high-α buffet control. The computations are in qualitative agreement with several recent post-stall flow control experiments. The physical mechanisms responsible for post-stall flow control, as observed from the numerical data, are explored in terms of nonlinear mode competition and resonance, as well as vortex dynamics. The leading-edge shear layer and vortex shedding from the trailing edge are two basic constituents of unsteady post-stall flow and its control. Since the former has a rich spectrum of response to various disturbances, in a quite wide range the natural frequency of both constituents can shift and lock-in to the forcing frequency or its harmonics. Thus, most of the separated flow becomes resonant, associated with much more organized flow patterns. During this nonlinear process the coalescence of small vortices from the disturbed leading-edge shear layer is enhanced, causing a stronger entrainment and hence a stronger lifting vortex. Meanwhile, the unfavourable trailing-edge vortex is pushed downstream. The wake pattern also has a corresponding change: the shed vortices of alternate signs tend to be aligned, forming a train of close vortex couples with stronger downwash, rather than a Kármán street.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 262 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3