Rapidly pitching plates in decelerating motion near the ground

Author:

Adhikari Dibya R.,Bhattacharya SamikORCID

Abstract

Birds employ rapid pitch-up motions close to the ground for different purposes: perching birds use this motion to decelerate and come to a complete stop while hunting birds, such as bald eagles, employ it to catch prey and swiftly fly away. Motivated by these observations, our study investigates how natural flyers accomplish diverse flying objectives by rapidly pitching their wings while decelerating near ground. We conducted experimental and analytical investigations focusing on rapidly pitching plates during deceleration in close proximity to the ground to explore the impact of ground proximity on the unsteady dynamics. Initially, we executed synchronous pitch-up motion, where both pitching and deceleration have the same motion duration, at different ground heights. Experimental results demonstrate that as the pitching wing approaches the ground, the instantaneous lift increases by approximately $38\,\%$ compared with a far-from-ground case, while the initial peak drag force remains relatively unchanged. Our analytical model conforms to this trend, predicting an increase in lift force as the wing approaches the ground, indicating enhanced added mass and circulatory lift force due to the ground effect. Next, we examined asynchronous pitch-up motion cases, where rapid pitching motions were initiated at different stages of deceleration. The results reveal that initiating the wing pitch early in the deceleration leads to the formation of larger counter-rotating vortices at the early stage of the manoeuvre. These vortices generate stronger dipole jets that orient backward in the later stages of the manoeuvre after impinging with the ground surface, which hunting birds utilize to accelerate after catching prey. Conversely, when the wing pitch is delayed, smaller vortices form, but their growth is postponed until late in the manoeuvre. This delayed vortex growth produces lift and drag force at the end phase of the manoeuvre that facilitates a smooth landing or perching. Thus, through strategic tuning of a rapid pitch-up motion with deceleration, natural flyers, such as birds, achieve diverse flying objectives.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3