Test-field model for inhomogeneous turbulence

Author:

Kraichnan Robert H.

Abstract

The test-field model for isotropic turbulence is restated in a form which is independent of the choice of orthogonal basis functions for representing the velocity field. The model is then extended to non-stationary inhomogeneous turbulence with a mean shearing velocity, contained by boundaries of arbitrary shape. A modification of the model is introduced which makes negligible changes in the numerical predictions but which greatly simplifies computations when the co-variance matrix and related statistical matrices are non-diagonal. The altered model may be regarded as a kind of generalization of Orszag's eddy-damped Markovian model, with the damping factors determined systematically, in representation-independent form, from dynamical equations. The final equations of the test-field model are presented in a sufficiently explicit form to serve as a starting point for numerical work. To facilitate comparison, the corresponding direct-interaction equations for inhomogeneous turbulence with mean shear are presented also, in a uniform notation. The test-field model is much faster to compute than the direct-interaction approximation because, in the former, only single-time statistical functions need be computed. This advantage is at the cost of a less rich and less faithful representation of the dynamics.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference15 articles.

1. Kraichnan, R. H. 1964c Phys. Fluids,7,1169.

2. Herring, J. R. & Kraichnan, R. H. 1972 Statistical Models and Turbulence . (ed. M. Rosenblatt & C. Van Atta ).Springer.

3. Leith, C. E. & Kraichnan, R. H. 1972 J. Atmos Sci. 29,1041.

4. Kraichnan, R. H. 1971 a J. Fluid Mech. 47,513.

5. Orszag, S. A. & Patterson, G. S. 1972 Phys. Rev. Lett. 28,76.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3