Non-axisymmetric vortices in two-dimensional flows

Author:

LE DIZÈS STÉPHANE

Abstract

Slightly non-axisymmetric vortices are analysed by asymptotic methods in the context of incompressible large-Reynolds-number two-dimensional flows. The structure of the non-axisymmetric correction generated by an external rotating multipolar strain field to a vortex with a Gaussian vorticity profile is first studied. It is shown that when the angular frequency w of the external field is in the range of the angular velocity of the vortex, the non-axisymmetric correction exhibits a critical-point singularity which requires the introduction of viscosity or nonlinearity to be smoothed. The nature of the critical layer, which depends on the parameter h = 1/(Re ε3/2), where ε is the amplitude of the non-axisymmetric correction and Re the Reynolds number based on the circulation of the vortex, is found to govern the entire structure of the correction. Numerous properties are analysed as w and h vary for a multipolar strain field of order n = 2, 3, 4 and 5. In the second part of the paper, the problem of the existence of a non-axisymmetric correction which can survive without external field due to the presence of a nonlinear critical layer is addressed. For a family of vorticity profiles ranging from Gaussian to top-hat, such a correction is shown to exist for particular values of the angular frequency. The resulting non-axisymmetric vortices are analysed in detail and compared to recent computations by Rossi, Lingevitch & Bernoff (1997) and Dritschel (1998) of non-axisymmetric vortices. The results are also discussed in the context of electron columns where similar non-axisymmetric structures were observed (Driscoll & Fine 1990).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3