Spreading and instability of a viscous fluid sheet

Author:

Hocking L. M.

Abstract

Experiments by Huppert (1982) have demonstrated that a finite volume of fluid placed on an inclined plane will elongate into a thin sheet of fluid as it slides down the plane. If the fluid is initially placed uniformly across the plane, the sheet retains its two-dimensionality for some time, but when it has become sufficiently long and thin, the leading edge develops a spanwise instability. A similarity solution for this motion was derived by Huppert, without taking account of the edge regions where surface tension is important. When these regions are examined, it is found that the conditions at the edges can be satisfied, but only when the singularity associated with the moving contact line is removed. When the sheet is sufficiently elongated, the profile of the free surface shows an upward bulge near the leading edge. It is suggested that the observed instability of the shape of the leading edge is a result of the dynamics of the fluid in this bulge. The related problem of a ridge of fluid sliding down the plane is examined and found to be linearly unstable. The spanwise lengthscale of this instability is, however, dependent on the width of the channel occupied by the fluid, which is at variance with the observed nature of the instability. Preliminary numerical solutions for the nonlinear development of a small disturbance to the position of a straight leading edge show the incipient development of a finger of fluid with a width that does not depend on the channel size, in accordance with the observations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference10 articles.

1. Hocking, L. M. 1982 Proc. 2nd Intl Coll. on Drops and Bubbles,pp.315–321. JPL Pub. 82–7, NASA/JPL.

2. Dussan V. E. B. & Chow, R. T.-P. 1983 J. Fluid Mech. 137,1–29.

3. Huppert, H. E. 1982 Nature 300,427–429.

4. Gennes, P. G. De 1985 Rev. Mod. Phys. 57,827–863.

5. Hocking, L. M. 1981 Q. J. Mech. Appl. Maths 34,37–55.

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3