Dewetting of a corner film wrapping a wall-mounted cylinder

Author:

Suo SiORCID,Habibi Khorasani Seyed MortezaORCID,Bagheri ShervinORCID

Abstract

In this study, we investigate the stability of a film that is attached to a corner between a cylinder and a substrate, using a combination of theoretical and numerical approaches. Notably, we place our focus on flat and thin films where the contact line is almost perpendicular to the cylinder wall whereas a small angle forms between the contact line and the substrate, and the film size is smaller than the cylinder radius. The film stability, which depends on the film size and the wall wettability, is first predicted by a standard linear stability analysis (LSA) within the long-wave theoretical framework. We find that the film size plays the most important role in controlling the film stability. Specifically, the thicker the film is, the less sensitive it becomes to the large-wavenumber perturbation. The wall wettability mainly impacts the growth rates of perturbations and slightly influences the marginal stability and postinstability patterns of wrapping films. We compare the LSA predictions with numerical results obtained from a disjoining pressure model (DPM) and volume-of-fluid (VOF) simulations, which provide more insights into the film breakup process. At the early stage there is a strong agreement between the LSA predictions and the DPM results. Notably, as the perturbation grows, thin film regions connecting two neighbouring satellite droplets form which may eventually lead to a stable or temporary secondary droplet, an aspect which the LSA is incapable of capturing. In addition, the VOF simulations suggest that beyond a critical film size, merging between two neighbouring drops becomes involved during the breakup stage. Therefore, the LSA predictions are able to provide only an upper limit on the final number of satellite droplets.

Funder

Stiftelsen för Strategisk Forskning

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3