Author:
DING HANG,SPELT PETER D. M.
Abstract
Axisymmetric droplet spreading is investigated numerically at relatively large rates of spreading, such that inertial effects become important. Results from two numerical methods that use different means to alleviate the stress singularity at moving contact lines (a diffuse interface, and a slip-length-based level-set method) are shown to agree well. An initial inertial regime is observed to yield to a regime associated with Tanner's law at later times. The spreading rate oscillates during the changeover between these regimes. This becomes more significant for a fixed (effective) slip length when decreasing the value of an Ohnesorge number. The initial, inertia-dominated regime is characterized by a rapidly extending region affected by the spreading, giving the appearance of a capillary wave travelling from the contact line. The oscillatory behaviour is associated with the rapid collapse that follows the point at which this region extends to the entire droplet. Results are presented for the apparent contact angle as a function of dimensionless spreading rate for various values of Ohnesorge number, slip length and initial conditions. The results indicate that there is no such universal relation when inertial effects are important.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
128 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献