Flow structure near three phase contact line of low-contact-angle evaporating droplets

Author:

Wang Zhenying12ORCID,Karapetsas George3ORCID,Valluri Prashant4ORCID,Inoue Chihiro1ORCID

Affiliation:

1. Department of Aeronautics and Astronautics, Kyushu University 1 , Nishi-Ku, Motooka 744, Fukuoka 819-0395, Japan

2. International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 2 , Nishi-Ku, Motooka 744, Fukuoka 819-0395, Japan

3. Department of Chemical Engineering, Aristotle University of Thessaloniki 3 , Thessaloniki 54124, Greece

4. Institute of Multiscale Thermofluids, School of Engineering, University of Edinburgh 4 , Edinburgh EH9 3JL, United Kingdom

Abstract

Flow structure near three phase contact line (TPCL) of evaporating liquids plays a significant role in liquid wetting and dewetting, liquid film evaporation, and boiling. Despite the wide focus it receives, the interacting mechanisms therein remain elusive and in specific cases, controversial. Here, we reveal the profile of internal flow and elucidate the dominating mechanisms near TPCL of evaporating droplets, using mathematical modeling, trajectory analysis, and infrared thermography. We indicate that for less volatile liquids such as butanol, the flow pattern is dominated by capillary flow. With increasing liquid volatility, e.g., alcohol, the effect of evaporation cooling, under conditions, induces interfacial temperature gradient with cold droplet apex and warm edge. The temperature gradient leads to Marangoni flow that competes with outwarding capillary flow, resulting in the reversal of interfacial flow and the formation of a stagnation point near TPCL. The spatiotemporal variations of capillary velocity and Marangoni velocity are further quantified by mathematically decomposing the tangential velocity of interfacial flow. The conclusions can serve as a theoretical base for explaining deposition patterns from colloidal suspensions and can be utilized as a benchmark in analyzing more complex liquid systems.

Funder

Japanese Society for the Promotion of Science

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3