Shear-weakening of the transitional regime for granular flow

Author:

LU KEVIN,BRODSKY E. E.,KAVEHPOUR H. P.

Abstract

This paper experimentally investigates the rheology of dense granular flow through itssolid-like to fluid-like transition. Between the well-established flow regimes – quasi-static and grain-inertial – the physical description of the transition remains elusive. Our experiment uses a top-rotating torsional shear cell capable of ± 1 μm accuracy in height and 5 decades (10−3 − 100 rad s−1) in rotation rate. The data on beach sand shows that shear and normal stresses exhibit an inverse rate-dependence under a controlledvolume environment in the transitional regime, while in the limiting regimes the results are in agreement with previous work. Theshear-weakening stresses illustrate a previouslyunknown ‘dip’ with increasingshear rate. Under a controlled-pressure environment, however, the shear-compacting volume-fraction ‘peaks’ with increasing shear-rate. We combine these results from both configurations to infer a constitutive law based on a rate-invariant granular fluid compressibility. The formulation provides an equation-of-state for dynamic granular systems, with state variables of pressure, strain rate and free-volume-fraction. Fitting parameters from independent constant-volume and constant-pressure data shows good agreement in validating our model. Moreover, the degree of grain jaggedness is essential to the rate-dependence within the transitional regime. The results on the solid–fluid transitionmay elucidate the evolution of granular flow anisotropies.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference54 articles.

1. The brazil nut effect — in reverse

2. Crucial role of sidewalls in granular surface flows: consequences for the rheology

3. Force Distributions near Jamming and Glass Transitions

4. Numerical modeling of geophysical granular flows: 1. a comprehensive approach to granular rheologies and geophysical multiphase flows;Dartevelle;Geochem. Geophys. Geosyst.,2004

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3