Skip to main content
Log in

Mechanical model of evolution of granular matter force chains

  • Original Report
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Granular models are key for understanding many phenomena in seismology, geophysics and geotechniques. Investigations of granular matters have shown that the scale of activated force chains decreases and a transition from solid-like behavior to liquid-like behavior occurs with the increase of shearing rate, and that at a low shearing rate viscosity is almost inversely proportional to maximal sliding velocity. At present, mechanical models describing the aforementioned behavior of granular matter are still lacking. Here we proposed a mechanical model of granular matter with internal length scale, reflecting the fact that the loading of granular matter is caused by shearing, and the stress relaxation is caused by shear band propagation. In combination with the constancy of shear band propagation speed, relationship between the length of activated force chains and shearing rate is obtained, the inverse proportionality of viscosity to shearing rate is interpreted, and the solid-to-liquid behavior transition shearing rate is predicted very well. This model can provide an effective approach to describe force chain evolution and the transition of granular matter from solid-like behavior to liquid-like behavior.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

V :

The sliding velocity (mm/s)

V 0 :

A reference sliding velocity (mm/s)

V max :

Maximal sliding velocity (mm/s)

η :

Effective viscosity (Pa∙s)

ν :

Relaxation speed (m/s)

c s :

The propagation speed of the elastic shear wave (m/s)

\(\dot{\gamma }_{d}\) :

The characteristic transition shearing rate corresponding to particle diameter d (m/s)

δ :

The interface gouge granular layer thickness (m)

d :

Particle diameter (m)

l :

Characteristic length (m)

D c :

The critical slip distance (m)

t r :

The relaxation time (s)

T bc :

Binary contact time (s)

t* :

The time for deformation to reach its limit (s)

τ :

Shear stress (MPa)

τ fric :

A shear stress related to friction (MPa)

τ vis :

A shear stress related to viscosity (MPa)

σ n :

Effective normal stress (MPa)

σ :

Consolidating stress (MPa)

σ I :

Intensity of stress deviator (MPa)

\(s^l_{ij}\) :

Deviatoric stresses corresponding to scale level l (MPa)

G :

Shear modulus (MPa)

E :

Young’s modulus (MPa)

F :

Driving force (N)

ρ :

The density of the medium (kg/m3)

\(\dot{\gamma }\) :

Strain rate

γ * :

Crituical hear bands deformation

\(\dot{e}_{ij}\) :

Deviatoric strain rate components

ε* :

Limit strain

\(\dot{\varepsilon }_{I}\) :

Strain rate intensity

μ 0 :

The steady state friction coefficient at V = V0

a,b :

Material property parameters

θ :

The state variable

Sa :

Savage number

μ f :

Friction coefficient

μ :

Poisson’s ratio

References

  1. Rothenburg, L., Bathurst, R.J.: Micromechanical features of granular assemblies with planar elliptical particles. Geotechnique 42, 79–95 (1992). https://doi.org/10.1680/geot.1992.42.1.79

    Article  Google Scholar 

  2. Liu, C.H., Nagel, S.R., Shecter, D.A.: Force fluctuations in bead packs. Science 269, 513–515 (1995). https://doi.org/10.1126/science.269.5223.513

    Article  ADS  Google Scholar 

  3. Radjai, F., Jean, M., Moreau, J.J., et al.: Force distributions in dense two-dimensional granular systems. Phys. Rev. Lett. 772, 274–277 (1996). https://doi.org/10.1103/PhysRevLett.77.274

    Article  ADS  Google Scholar 

  4. Antony, S.J.: Evolution of force distribution in three-dimensional granular media. Phys. Rev. E 63(1), 011302 (2000). https://doi.org/10.1103/PhysRevE.63.011302

    Article  ADS  Google Scholar 

  5. Gravish, N., Unbanhowar, P.B., Goldman, D.I.: Force and flow at the inset of drag in plowed granular media. Phys. Rev. E 89(4), 042202 (2014). https://doi.org/10.1103/PhysRevE.89.042202

    Article  ADS  Google Scholar 

  6. Mueth, D.M., Debregeas, G.F., Karczmar, G.S., et al.: Signatures of granular microstructure in dense shear flows. Nature 406(6974), 385–389 (2000). https://doi.org/10.1038/35019032

    Article  ADS  Google Scholar 

  7. Hartley, R.R., Behringer, R.P.: Logarithmic rate dependence of force networks in sheared granular materials. Nature 421(6926), 928–931 (2003). https://doi.org/10.1038/nature01394

    Article  ADS  Google Scholar 

  8. Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress induced anisotropy in granular materials. Nature 435(1079), 1079–1082 (2005). https://doi.org/10.1038/nature03805

    Article  ADS  Google Scholar 

  9. Daniels, K.E., Hayman, N.W.: Force chains in seismogenic faults with photoelastic granular shear experiments. J. Geophys. Res. 113(B11), B11411 (2008). https://doi.org/10.1029/2008JB005781

    Article  ADS  Google Scholar 

  10. Hayman, A.W., Dusloue, L., Foco, K., et al.: Granular controls on periodicity of stick-slip events: kinematics and force-chainsin an experimental fault. Pure Appl. Geophys. 168(12), 2239–2257 (2011). https://doi.org/10.1007/s00024-011-0269-3

    Article  ADS  Google Scholar 

  11. Wang, Z.F., Qi, C.Z., Ban, L., et al.: Modified hoek-brown failure criterion for anisotropic intact rock under high confining pressures. Bull. Eng. Geol. Env. 81(8), 1–13 (2022). https://doi.org/10.1007/s10064-022-02831-8

    Article  Google Scholar 

  12. Radjai, F., Wolf, D., Jean, M., et al.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1), 61–64 (1998). https://doi.org/10.1103/PhysRevLett.80.61

    Article  ADS  Google Scholar 

  13. Kruyt, N.P., Antony, S.J.: Force, relative-displacement, and work networks in granular materials subjected to quasi-static deformation. Phys. Rev. E 75(1), 051308 (2007). https://doi.org/10.1103/PhysRevE.75.051308

    Article  ADS  Google Scholar 

  14. Antony, S.J.: Link between single-particle properties and macroscopic properties in particulate assemblies: role of structures within structures. Phil. Trans. R. Soc. A 365(1861), 2879–2891 (2017). https://doi.org/10.1098/rsta.2007.0004

    Article  ADS  MathSciNet  Google Scholar 

  15. Campbell, C.S.: Stress controlled elastic granular shear flows. J. Fluid Mech. 539, 273–297 (2005). https://doi.org/10.1017/S0022112005005616

    Article  ADS  Google Scholar 

  16. Campbell, C.S.: Granular material flows, an overview. Powder Technol. 162(3), 208–229 (2006). https://doi.org/10.1016/j.powtec.2005.12.008

    Article  Google Scholar 

  17. Richefeu, V., Youssoufi, M.S., Azema, E., et al.: Force transmission in dry and wet granular media. Powder Technol. 190, 258–263 (2009). https://doi.org/10.1016/j.powtec.2008.04.069

    Article  Google Scholar 

  18. Scholz, C.H.: The Mechanics of Earthquakes and Faulting. Cambridge Univ Press, New York (1990)

    Google Scholar 

  19. Sibson, R.H.: Thickness of the seismic slip zone. Bull. Seismol. Soc. Am. 93(3), 1169–1178 (2003). https://doi.org/10.1785/0120020061

    Article  Google Scholar 

  20. Chester, J.S., Chester, F.M., Kronenberg, A.K.: Fracture surface energy of the Punchbowl fault San Andreas system. Nature 437(7055), 133–136 (2005). https://doi.org/10.1038/nature03942

    Article  ADS  Google Scholar 

  21. Sammis, C., King, G., Biegel, R.: The kinematics of gouge deformation. Pure Appl. Geophys. 125(5), 777–812 (1987). https://doi.org/10.1007/BF00878033

    Article  ADS  Google Scholar 

  22. Kocharyan, G.G., Novikov, V.A.: Experimental study of different modes of block sliding along interface. Part 1. Laboratory experiments. Phys. Mesomech. 19(2), 189–199 (2016). https://doi.org/10.1134/S1029959916020120

    Article  Google Scholar 

  23. Kocharyan, G.G., Ostapchuk, A.A., Pavlov, D.V., et al.: Experimental study of different modes of block sliding along interface. Part 2 Field experiments and phenomenological model of the phenomenon. Phys. Mesomech. 20(2), 193–202 (2017). https://doi.org/10.1134/S1029959916020120

    Article  Google Scholar 

  24. Budkov, A.M., Kocharyan, G.G.: Experimental study of different modes of block sliding along interface. Part 3. Numerical modeling. Phys. Mesomech. 20(2), 203–208 (2017). https://doi.org/10.1134/S1029959917020102

    Article  Google Scholar 

  25. Dieterich, J.: Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res. B 84(5), 2161–2168 (1979). https://doi.org/10.1029/JB084iB05p02161

    Article  ADS  Google Scholar 

  26. Ruina, A.: Slip instability and state variable friction laws. J Reophys Res B 88(12), 10359–10370 (1983). https://doi.org/10.1029/JB088iB12p10359

    Article  ADS  Google Scholar 

  27. Sholz, C.H.: Earthquakes and friction laws. Nature 391, 37–42 (1998). https://doi.org/10.1038/34097

    Article  ADS  Google Scholar 

  28. Lu, K., Brodsky, E.E., Kavehpour, H.P.: Shear-weakening of the transitional regime for granular flow: the role of compressibility. J. Fluid Mech. 587, 347–372 (2007). https://doi.org/10.1017/S0022112007007331

    Article  ADS  Google Scholar 

  29. Savage, S.B.: Analysis of slow high-concentration flows of granular materials. J. Fluid Mech. 377, 1–26 (1998). https://doi.org/10.1017/S0022112098002936

    Article  ADS  MathSciNet  Google Scholar 

  30. Aranson, I.S., Tsimring, L.S.: Continuum description of avalanches in granular media. Phys. Rev. E 64, 020301 (2002). https://doi.org/10.1103/PhysRevE.64.020301

    Article  Google Scholar 

  31. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006). https://doi.org/10.1038/nature04801

    Article  ADS  Google Scholar 

  32. Landau, L.D., Lifshitz, E.M.: Theory of elasticity. Pergamon, New York (1959)

    Google Scholar 

  33. Radionov, V.N., Sizov, I.A., Tsvetkov, V.M.: Fundamental of geomechanics. Nedra, Moscow (1986)

    Google Scholar 

  34. Qi, C.Z., Wang, M.Y., Bai, J.P., et al.: Investigation into size and strain rate effects on the strength of rock-like materials. Int. J. Rock Mech. Min. Sci. 86(1), 132–140 (2016). https://doi.org/10.1016/j.ijrmms.2016.04.008

    Article  Google Scholar 

  35. Qi, C.Z., Chen, H.X., Bai, J.P., et al.: Viscosity of rock mass at different structural levels. Acta Geotech. 12(2), 305–320 (2017). https://doi.org/10.1007/s11440-016-0449-5

    Article  Google Scholar 

  36. Staron, L., Radjai, F., Vilotte, J.P.: Multi-scale analysis of the stress state in a granular slope in transition to failure. Eur. Phys. J. E 18, 311–320 (2005). https://doi.org/10.1140/epje/e2005-00031-0

    Article  Google Scholar 

  37. Richefeu, V., Radjai, F., Youssoufi, M.S.: Stress transmission in wet granular materials. Eur. Phys. J. E 21, 359–369 (2007). https://doi.org/10.1140/epje/i2006-10077-1

    Article  Google Scholar 

  38. Turuntaev, S.B., Kuljukin, A.M., Gerasimova, T.I., et al.: Dynamics of localization shear deformation in sand. Doklady Akademii Nauk (Reports of Russian Academy of Science) 354(1), 105–108 (1997)

    Google Scholar 

  39. Mogi, K.: Migration of seismic activity. Bull. Earthq Res Ins. Tokyo Univ. 46, 53–74 (1968)

    Google Scholar 

  40. Savage, J.C.: A theory of creep waves propagation along a transform faults. J. Geophys. Res. 76(8), 1954–1966 (1971)

    Article  ADS  Google Scholar 

  41. Sherman, S.I.: Deformation waves as trigger mechanism of seismic activity in seismic zones of continental lithosphere. Geodyn & Tectonophys. 4(2), 83–117 (2013)

    Article  Google Scholar 

  42. Landau, L.D., Lifshitz, E.M.: Satistical Physics. Pergamon Press, New York (1959)

    Google Scholar 

Download references

Acknowledgements

The study was supported by the National Natural Science Foundation of China (Nos. 12172036, 51774018), the “973” Key State Research Program (Nos. 2015CB0578005), Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, IRT_17R06).

Author information

Authors and Affiliations

Authors

Contributions

Chengzhi Qi: Conceptualization, Methodology, Formal analysis,Investigation, Writing–original draft, Writing–reviewing and Editing, Funding acquisition, Resources, Supervision. Zefan Wang: Formal analysis, Investigation, Writing–original draft, Writing–reviewing and Editing. G.G. Kocharyan: Writing-reviewing and Editing.

Corresponding author

Correspondence to Zefan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article is not necessary to obtain informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, C., Wang, Z. & Kocharyan, G.G. Mechanical model of evolution of granular matter force chains. Granular Matter 26, 35 (2024). https://doi.org/10.1007/s10035-024-01406-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-024-01406-6

Keywords

Navigation