Correction factors for 13C-labelled substrate oxidation at whole-body and muscle level

Author:

van Hall Gerrit

Abstract

The oxidation of fatty acids, carbohydrates and amino acids can be measured by quantifying the rate of excretion of labelled CO2 following administration of 14C- or 13C-labelled substrates at whole-body and tissue level. However, there is a theoretical need to correct the oxidation rates for the proportion of labelled CO2 that is produced via oxidation but not excreted. Furthermore, depending on the substrate and position of the C label(s), there may also be a need to correct for labelled C from the metabolized substrate that does not appear as CO2, but rather becomes temporarily fixed in other metabolites. The bicarbonate correction factor is used to correct for the labelled CO2 not excreted. Recently, an acetate correction factor has been proposed for the simultaneous correction of CO2 not excreted and label fixed in other metabolites via isotopic exchange reactions, mainly in the tricarboxylic acid cycle. Changes in metabolic rate induced, for example, by feeding, hormonal changes and physical activity, as well as infusion time, have been shown to affect both correction factors. The present paper explains the theoretical and physiological basis of these correction factors and makes recommendations as to how these correction factors should be used in various physiological conditions.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Reference33 articles.

1. Validation of the [1,2-13C]acetate recovery factor for correction of [U-13C]palmitate oxidation rates in humans

2. Rapid determination of whole-body bicarbonate kinetics by use of digital infusion;Irving;American Journal of Physiology,1984

3. Kinetic aspects of acetate metabolism in healthy humans using [1-13C]acetate;Pouteau;American Journal of Physiology,1996

4. [13C]bicarbonate kinetics in humans: intra- vs inter-individual variations;Irving;American Journal of Physiology,1983

5. Kinetics of13CO2elimination after ingestion of13C bicarbonate: the effects of exercise and acid base balance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3