Essential Amino Acid Ingestion Facilitates Leucine Retention and Attenuates Myofibrillar Protein Breakdown following Bodyweight Resistance Exercise in Young Adults in a Home-Based Setting

Author:

Waskiw-Ford MarcusORCID,Hodson NathanORCID,Fung Hugo J. W.ORCID,West Daniel W. D.ORCID,Apong Philip,Bashir Raza,Moore Daniel R.ORCID

Abstract

Home-based resistance exercise (RE) has become increasingly prevalent, but its effects on protein metabolism are understudied. We tested the effect of an essential amino acid formulation (EAA+: 9 g EAAs, 3 g leucine) and branched-chain amino acids (BCAAs: 6 g BCAAs, 3 g leucine), relative to a carbohydrate (CHO) placebo, on exogenous leucine retention and myofibrillar protein breakdown following dynamic bodyweight RE in a home-based setting. Twelve recreationally active adults (nine male, three female) participated in a double-blind, placebo-controlled, crossover study with four trial conditions: (i) RE and EAA+ (EX-EAA+); (ii) RE and BCAAs (EX-BCAA); (iii) RE and CHO placebo (EX-CHO); and (iv) rest and CHO placebo (REST-CHO). Total exogenous leucine oxidation and retention (estimates of whole-body anabolism) and urinary 3-methylhistidine:creatinine ratio (3MH:Cr; estimate of muscle catabolism) were assessed over 5 h post-supplement. Total exogenous leucine oxidation and retention in EX-EAA+ and EX-BCAA did not significantly differ (p = 0.116) but were greater than EX-CHO (p < 0.01). There was a main effect of condition on urinary 3MH:Cr (p = 0.034), with post hoc analysis revealing a trend (p = 0.096) for reduced urinary 3MH:Cr with EX-EAA+ (32%) compared to EX-CHO. By direct comparison, urinary 3MH:Cr was significantly lower (23%) in EX-EAA+ than EX-BCAA (p = 0.026). In summary, the ingestion of EAA+ or BCAA provided leucine that was ~60% retained for protein synthesis following home-based bodyweight RE, but EAA+ most effectively attenuated myofibrillar protein breakdown.

Funder

Iovate Health Sciences Inc.

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3