Predicting the distribution of the air pollution sensitive lichen species Usnea hirta

Author:

SHRESTHA Gajendra,PETERSEN Steven L.,ST. CLAIR Larry L.

Abstract

AbstractUsnea hirta, an important member of the lichen family Parmeliaceae, has long been used as a bio-monitor of air pollution, particularly of sulphur dioxide in North America. Although U. hirta has a wide geographical distribution, it is important to be able to identify accurately the optimal habitat conditions for air pollution-sensitive species, thus making it possible to more effectively and efficiently establish air quality bio-monitoring stations. We modelled the distribution of U. hirta as a function of nine variables, five macroclimatic variables: average monthly precipitation, average monthly minimum temperature, average monthly maximum temperature, solar radiation, and integrated moisture index, and four topographic variables: elevation, slope, aspect, and land forms and uses for the White River National Forest, Colorado. The response variable was developed based on the presence or absence of U. hirta at each of 72 bio-monitoring baseline sites established in selected portions of four intermountain area states. Our model was developed using Non-Parametric Multiplicative Regression (NPMR) analysis, a modelling approach that analyzes environmental gradients, or predictor variables, against known locations for individuals of the model species. Finally, we evaluated our model on the basis of log β values and overall improvement over a naïve model and the Monte Carlo Permutation Test with 1000 randomized runs. The best model for U. hirta included four variables – solar radiation, average monthly precipitation, and average monthly minimum and maximum temperatures (log β=3·68). Among these four variables, average monthly maximum temperature was the most influential predictor (sensitivity=0·71) for the distribution of U. hirta. The occurrence rate for U. hirta, based on field validation, was 45·5%, 65·4%, and 70·4% for low, medium, and high probability areas, respectively. This study showed that our model was successful in predicting the distribution of U. hirta in the White River National Forest. Based on these results, the north-eastern and western portions of the forest appear to offer the most favourable conditions for the installation of future air quality bio-monitoring baseline sites.

Publisher

Cambridge University Press (CUP)

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3